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Abstract—The superconductor-insulator-superconductor
(SIS) junction is the most sensitive nonlinear element for mil-
limeter-wave heterodyne detection. We have developed a
Nb/Al-ALO; /Nb junction fabrication process which allows the
use of planar tuning circuits integrated with the junctions.
These tuning elements permit the use of junctions with rela-
tively large areas and small current densities with excellent re-
sults. Recent measurements have yielded a double sideband re-
ceiver noise temperature less than 50K from 205 to 240 GHz
and 44K at 230 GHz. We are also extending our Nb/Al-
ALO; /Nb trilayer technology to the fabrication of sub-square-
micron area planar junctions for submillimeter wavelengths.

I. INTRODUCTION

b/Al-Al,O; /Nb trilayer junctions have surpassed

those made by all other SIS technologies in leakage
current and uniformity. They are currently the element of
choice for ultra low noise millimeter wave heterodyne de-
tection. We are investigating both Nb and NbCN super-
conductors in the planar and edge junction geometries for
millimeter and submillimeter wavelengths. In this paper
we discuss the recent results of our Nb trilayer technol-
ogy.

There have generally been two approaches to optimiz-
ing SIS mixers for millimeter wavelengths: 1) the use of
very small area, high current density (J.) junctions to
minimize wRyC [1]-[5], where Ry is the normal state re-
sistance and C is the junction capacitance, and 2) the use
of integrated elements to tune out the junction capacitance
while keeping the benefits of a larger junction capacitance
[6]-[11]. For millimeter wavelength, both approaches
have been rather successful. At higher frequencies the use
of increasingly smaller junction areas and higher J, values
may be restricted by fabrication limitations and the prop-
erties of available superconductors. For example, with C;
= 45 fF /um®, IRy = 1.8 mV, and Ry = 100 Q [12], a
choice of wRyC = 1 at 100 GHz with the Nb/Al-
Al,O; /Nb system requires a junction area of approxi-
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mately 0.35 pm® and a J, = 5.1 X 10° A/cm®. Even if
we ignore the J. « f? relationship found by Kerr and Pan
for the choice of wRyC = 4 [10], at 600 GHz and 1 THz
the desired junction areas and J.. values would still be 0.06
pm® and 3 X 10* A /cm?, and 0.035 pm* and 5 x 10*
A /cm?, respectively. In light of the analysis by Kerr and
Pan, these numbers, particularly the J, values, are cer-
tainly optimistic estimates. The fabrication of such planar
trilayer junctions having reasonable electrical character-
istics may be quite difficult. An attractive alternative is
the use of integrated superconductive tuning elements and
impedance matching superconductive transmission lines,
which permit the use of larger junction areas and smaller
J. values (larger wRyC). Additionally, the expected dif-
ficulty in suppressing Josephson currents (and the result-
ing Josephson noise) for very small junction areas and
arrays of junctions argues for the integrated tuning ele-
ment approach. Resistive loss in superconductor films at
frequencies approaching 2A /h (=700 GHz for Nb) will,
however, prevent the use of superconductive tuning ele-
ments above these frequencies, and normal metal tuning
elements [9] or alternative mixer designs will need to be
developed.

II. SIS Mixer ELEMENTS WITH INTEGRATED TUNING
ELEMENTS

For SIS mixers, the use of relativity large wRyC values
has three advantages: (i) The large capacitance tends to
short-circuit currents at the LO harmonics and harmonic
sidebands, (ii) Undesired effects of the AC Josephson cur-
rents in the junction are reduced, and (iii) It is easier to
fabricate the required junction elements. However, for
good mixer performance it is necessary to tune out the
junction capacitance at the signal frequency. To do this,
we have used inductive tuning circuits integrated with the
individual junctions [9], [12], [13]. In our earlier work

- [9], [13], we reported utilizing a trilevel resist to pattern

junction areas in Nb/Al-Al,O; /Nb films and to define
the inductive portion of the stripline tuning element (Fig.
1). After reactive ion etching to define the junction area,
the perimeter of the junction is revealed and a liftoff struc-
ture is defined with an oxygen plasma shrink of the ex-
posed polyimide sidewalls. A subsequently off-axis de-
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Fig. 1. Outline of original trilevel resist insulation process.
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Fig. 2. Noise temperature measurements from 205 GHz to 260 GHz for a
NRAO receiver incorporating Nb /Al- A1203 /Nb junctions fabricated at the
University of Virginia. The DSB receiver noise temperature at 230 GHz
was 44K. :

posited insulation layer seals the sides and the perimeter
of the Nb counter electrode button and forms the dielec-
tric for the inductive superconductive stripline. The ex-
cellent liftoff profile that is obtained with this technique
allows the use of thick insulation layers. We have utilized
this technique repeatably to fabricate high-quality junc-
tions of 1.5 /,cm diameter-and current density as large as
1 x 10* A /cm?.

The most recent results at 230 GHz are shown in Fig.
2. A six junction array was mounted in an NRAO-401
mixer which utilizes two non-contacting adjustable tuners
positioned in full-height waveguide. The DSB mixer noise
temperature and gain at 230 GHz are 15.5K and —1.5 dB
respectively. The receiver has a DSB noise temperature
(Tg) of 44 K at 230 GHz, and a Tj below 50K from 205
GHz to 240 GHz [14]. These figures are the lowest re-
ported for a receiver operating over this frequency range.
The integrated tuning elements permitted the use of junc-
tions which are relatively large (A ~.4um?) and also have
a low current density (J, = 3 X 10> A /cm?).

II. Cr TRILEVEL RESIST INSULATION PROCESS

The optimal performance of SIS mixers requires that
the junction area be decreased as the frequency of oper-
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ation increases; however, an isotropic Nb etch limits the
present SiO, trilevel process to the fabrication of junc-
tions with an area of = 1.5 yum?. The limitation arises from
an unfortunate characteristic of the SiO, masking layer: it
etches rapidly in low pressure CF, based etches which are
otherwise well-suited for anisotropic definition of the Nb
counter electrodes. The high pressure (300 pum) Nb etch
of the present process appreciably increases lateral etch-
ing, or ‘‘undereutting,”’ of the Nb counter electrode. The
undercutting is especially problematic for small features
because the Nb counter electrode is either etched away
entirely or is so small that the subsequent oxygen plasma

~ shrink of the polyimide layer to eéxpose the counter elec-

trode perimeter can not be performed repeatably, (Fig. 3).
Our new approach involves the replacement of the SiO,
with a =600 A Cr layer (defined by wet etching) which
is resistant to the CF, + O, Reactive Ion Etching (RIE)
chemistry. As a result, the Nb counter electrode layer may
be etched with a low pressure (25 um) RIE process which
yields no undercutting. In fact, we have determined that

if the polyimide features are shrunk prior to the low pres-

sure Nb etch, then the Nb etch defines junctions whose
sizes are determined by the Cr overhang of each feature
rather than by the polyimide. The low pressure etch leaves
the Nb untouched beneath the polyimide and only slightly
etches the Nb beneath the Cr overhang. Consequently,
there is already an exposed top surface along the perim-
eter of each junction, so no additional polyimide shrink
step is necessary before the deposition of the SiO insula-
tion layer. Eliminating the polyimide shrink after the Nb
etch is particularly beneficial because difficulties in
shrinkage due to Plasma Resist Image Stabilization Tech- .
nique (PRIST) hardening [9], [15] from the Nb etch are
avoided.

“This improved approach is depicted in Fig. 4; it should
be noted that the polyimide defining etch and polyimide
shrink have been combined into a single step. These were
combined by decreasing the power density and hence the
anisotropy of the initial polyimide etch. Fig. 5 is an SEM
micrograph of a 1 um diameter junction prior to insulator
deposition and polyimide liftoff. It is apparent that there
is.enough exposed area along the perimeter to easily allow
sealing of the junction perimeter with -an insulator. Fig. 6
shows such a sealed junction after the polyimide liftoff.
If wafers were kept stationary during the off-axis deposi-
tion of SiO, the Cr overhang would prevent SiO from
reaching a portion of each junction perimeter. Thus, in
order to allow symmetric coverage of the junction perim-
eters, the wafer is rotated, resulting in the ring of thinner
SiO surrounding each junction. _

In Fig. 7, the deposition of SiO has been omltted how-
ever, the polyimide feature has. been lifted off to expose
an entire junction. In addition to-allowing an accurate de-
termination of junction size, such a view also clearly in-
dicates a slight etching of the Nb which was outside the
polyimide feature yet beneath the Cr overhang. When the
SiO deposition step is included before liftoff, the SiO cov-
ers this ring of slightly etched Nb (Fig. 4). Our results
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Fig. 3. An SEM micrograph of a 0.3 um X 0.3 pm Nb junction area for
which a successful SiO, based trilevel resist feature was obtained. The
shrinkage from the mask feature size of 0.8 um X 0.8 pm is primarily due
to the ‘‘undercutting’’ of the Nb film in the high pressure CF, + O, etch.
A lateral shrinkage of 0.25 pum < X0 < 0.35 pm was therefore required
for this successful polyimide shrink step. This step is performed, however,
without quantitative information on the extent of the Nb undercutting, re-
sulting in poor repeatability.
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Fig. 5. -An SEM micrograph of a Cr based trilevel resist defined Nb
counter electrode. The excellent liftoff profile has been obtained with a pre-
shrink of the polyimide prior to definition of the junction area. The sub-
sequent SiO deposition will insulate the perimeter of the junction area.

Fig. 6. An SEM micrograph of a Nb counter electrode whose perimeter
has been well sealed with SiO using the improved trilevel resist process.
(The cracks are in a gold layer deposited on the SEM sample to create a
conducting surface.)

Fig. 7. An SEM micrograph of a 1 um diameter Nb electrode on a wafer
for which the SiO insulation step was omitted.

indicate that the width of this ring varies very little with
junction size; thus, junctions of a wide range of sizes
should be equally well-sealed along their perimeters.
Presently, we have used this Cr-based trilevel resist pro-
cess to define junction areas as small as 0.5 pm?>.

IV. SumMMmARY

SIS mixer elements, based on the Nb/Al trilayer sys-
tem, have resulted in very low receiver noise tempera-
tures from 205 GHz to 240 GHz. Although other material
systems and geometries (the NbN /MgO material system
and the edge geometry in particular) appear attractive for
submillimeter wavelengths, the Nb/Al trilayer system
may prove to be a competitive technology. Our present

. research with the Nb trilayer system includes new fabri-

cation techniques for sub-square-micron junction areas,
and individually tuned and fixed tuned SIS detector ele-
ments. In addition to heterodyne detection work, direct.
detection experiments are ongoing at 585 GHz and 763
GHz. '
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